Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities.
نویسندگان
چکیده
Many small nucleolar RNAs (snoRNAs) are encoded within introns of protein-encoding genes and are released by processing of their host pre-mRNA. We have investigated the mechanism of processing of the yeast U18 snoRNA, which is found in the intron of the gene coding for translational elongation factor EF-1beta. We have focused our analysis on the relationship between splicing of the EF-1beta pre-mRNA and production of the mature snoRNA. Mutations inhibiting splicing of the EF-1beta pre-mRNA have been shown to produce normal U18 snoRNA levels together with the accumulation of intermediates deriving from the pre-mRNA, thus indicating that the precursor is an efficient processing substrate. Inhibition of 5'-->3' exonucleases obtained by insertion of G cassettes or by the use of a rat1-1 xrn1Delta mutant strain does not impair U18 release. In the Exo- strain, 3' cutoff products, diagnostic of an endonuclease-mediated processing pathway, were detected. Our data indicate that biosynthesis of the yeast U18 snoRNA relies on two different pathways, depending on both exonucleolytic and endonucleolytic activities: a major processing pathway based on conversion of the debranched intron and a minor one acting by endonucleolytic cleavage of the pre-mRNA.
منابع مشابه
Release of U18 snoRNA from its host intron requires interaction of Nop1p with the Rnt1p endonuclease.
An external stem, essential for the release of small nucleolar RNAs (snoRNAs) from their pre-mRNAs, flanks the majority of yeast intron-encoded snoRNAs. Even if this stem is not a canonical Rnt1p substrate, several experiments have indicated that the Rnt1p endonuclease is required for snoRNA processing. To identify the factors necessary for processing of intron-encoded snoRNAs, we have raised i...
متن کاملTwo different snoRNAs are encoded in introns of amphibian and human L1 ribosomal protein genes.
We previously reported that the third intron of the X.laevis L1 ribosomal protein gene encodes for a snoRNA called U16. Here we show that four different introns of the same gene contain another previously uncharacterized snoRNA (U18) which is associated with fibrillarin in the nucleolus and which originates by processing of the pre-mRNA. The pathway of U18 RNA release from the pre-mRNA is the s...
متن کاملProcessing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1.
Small nucleolar RNAs (snoRNAs) are intron encoded or expressed from monocistronic independent transcription units, or, in the case of plants, from polycistronic clusters. We show that the snR190 and U14 snoRNAs from the yeast Saccharomyces cerevisiae are co-transcribed as a dicistronic precursor which is processed by the RNA endonuclease Rnt1, the yeast ortholog of bacterial RNase III. RNT1 dis...
متن کاملSeven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast.
Through a computer search of the genome of the yeast Saccharomyces cerevisiae, the coding sequences of seven different box C/D antisense small nucleolar RNAs (snoRNAs) with the structural hallmarks of guides for rRNA ribose methylation have been detected clustered over a 1.4-kb tract in an inter-open reading frame region of chromosome XIII. The corresponding snoRNAs have been positively identif...
متن کاملProcessing of the precursors to small nucleolar RNAs and rRNAs requires common components.
The genes encoding the small nucleolar RNA (snoRNA) species snR190 and U14 are located close together in the genome of Saccharomyces cerevisiae. Here we report that these two snoRNAs are synthesized by processing of a larger common transcript. In strains mutant for two 5'-->3' exonucleases, Xrn1p and Rat1p, families of 5'-extended forms of snR190 and U14 accumulate; these have 5' extensions of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 18 6 شماره
صفحات -
تاریخ انتشار 1998